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lbstract ~Relatioilshjps for the turbulent Prandtl and Schmidt number are presented. They are based on 
nodeled transport equations for the turbulent kinetic energy, for the turbulent heat flux, and the 
urbulent mass flux. The final results are simple formulae Pr, = C + B/P? and SC, = F+ E/SC where the 
zonstants have to be adjusted from experimental data. This has been done for the constants in the 
-elationship for the turbulent Prandtl number which is in very good agreement with experiments. The 
agreement can be improved by assuming B to be a function of the Reynolds number. The result is 
specially interesting for liquid metals, because for low Prandtl numbers the turbulent Prandtl number 
obviously depends strongly on the molecular Prandtl number. The influence of the Reynolds number, 

which is increasing for decreasing Prandtl numbers. seems to be weaker. 

NOhlENCLATURE heat and mass transfer. Experimental as well as 
mass-fraction ; theoretical investigations have shown that the turbu- 
specific heat at constant pressure; lent Prandtl/Schmidt number is neither a constant 
binary diffusion coefficient; nor a unique function of the fluid properties. The 
half channel width: turbulent Prandtl/Schmidt number depends strongly 
diffusion ftux ; on the turbulence mechanism and therefore on the 
turbulent kinetic energy; flow field. In general it is a function of: 
mixing length; 

turbulence length scale; 

turbulent Lewis number; 

static pressure; 

P&let number; 

molecular Prandtl number; 
turbulent Prandtl number; 
heat flux ; 
Reynolds number: 
molecular Schmidt number; 
turbulent Schmidt number; 
temperature ; 
components of velocity; 
components of space co-ordinate. 

Greek symbols 

turbulent dissipation ; 
eddy diffusivity for mass : 
eddy diffusivity for heat; 
eddy diffusivity for momentum; 
dynamic viscosity ; 
thermal conductivity: 
kinematic viscosity: 
density ; 
shear stress. 

Subscripts 

t, turbulent. 

The Reynolds number Re; 

The molecular Prandtl or Schmidt number 

respectively ; and 
The coordinate normal to the wall. 

We shall discuss in detail in Section 3 that the 

influence of these three variables depends more or 
less on the molecular Prandtl/Schmidt number itself. 
For Pr or SC 2 1 (gases and liquids) the influence of 
the Reynolds and Prandtl/S~hmidt number seems to 
be weak. For values Pr or SC <e I (liquid metals) on 
the other hand there seems to be a strong influence 
of the Reynolds and PrandtljSchmidt number on the 
turbulent Prandtl/Schmidt number. In this case 
the dependence on the wall distance is small com- 
pared with the dependence on the Reynolds and 
Prandtl/Schmiht number. As a consequence of 
these statements the exact knowledge of the turbulent 
Prandtl/Schmidt number is much more problematic 
for liquid metals than for gases and liquids. 

The aim of this work is to discuss and to consider 

the influence of the molecular Prandti~S~hmidt 
number on the turbulent Prandtl~Schmidt number. 
Modeling assumptions will lead to a simple algebraic 
formula Pr,(Pr) and SC,(%) which can be used for 
fully developed duct flow. Further on we shall 
discuss the question how the influence of the 
Reynolds number can be taken into account. 

1. INTRODUCTION 2. GOVERNING EQUATIONS 

THE KNOWLEDGE of the turbulent Prandtl and The follbwing considerations are restricted to two- 
Schmidt number is the central problem of all dimensional incompressible thin shear flow layers of 
theoretical considerations concerning the turbulent a binary nonreacting mixture which are described by 
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the boundary layer equations: function of the Reynolds nwnbel 

(2.1) 

(2.2) 

(2.5) 

C?c - 
j = -pD-+pc’d 

ay 
(2.6) 

(2.7) 

The velocity components u and t’, the pressure p, 
the mass fraction c and the temperature T are time 
mean values; the bar is omitted for simplicity except 

for the correlation terms. The density p, the specific 
heat cp as well as the transport coefficients rj, D and A 

are assumed to be constant. 
In analogy to molecular transport coefficients 

Boussinesq suggested the introduction of eddy 
diffusivities by the definitions 

(2.8) 

Now the Reynolds shear stress is replaced by the 
eddy diffusivity E, for momentum and Reynolds heat 
and mass flux are replaced by the eddy diffusivity sh 
for heat and the eddy diffusivity E,, for mass. Ratios 
of those diffusivities are called the turbulent Prandtl 

and Schmidt number: 

(2.9) 

In addition a turbulent Lewis number is defined as 

the ratio 

(2.10) 

Closure assumptions are necessary to determine 
the unknown Reynolds fluxes or the eddy diffusi- 
vities respectively. This can be done either: 

by local relationships like the mixing length concept 
of Prandtl (first order closure); or 
by differential equations based on modeled transport 
equations (second order closure). 

3. EXPERIMENTAL INVESTIGATIONS 

From experiments in smooth tubes and channels it 
is known that the turbulent Prandtl number is a 

Rr = ~“? : II,,, = mised mean velocity. (3.1 ) 
I’ 

and the Prandtl number 

as well as the normalized wall distance y/W. 2H is 
the width of the channel or the diameter of the tube. 
Therefore a relationship, 

Pr, = f(Pr, Rr, y/H) or SC, = /‘(SC, Re, y/H), 

(3.3) 

is expected. Sometimes equation (3.3) is written like 

Pr, = ,f(Pr, Rr, g’,,/t’) or SC, = /‘(SC, Rr, c,/Y). 

(3.3) 

This can be done because the eddy di~usi\/ity c,,, of 
momentum divided by the viscosity I+ is a function of 
the Reynolds number and the wall distance. 

In the following some experimental results based 

on the book of Eckert and Drake [I] and the thesis 
of Fuchs [2] are given. Eckert and Drake report 
measurements for air and mercury in fully developed 
turbulent tube flow and they write [ 1, p. 3841: 
“Experimental difficulties were obviously so great 
that no satisfactory agreement between the results 
obtained by various investigators could be ob- 
tained”. Fuchs [2] describes the experimental difh- 
culties in more detail. They arise from the definition 
of the turbulent Prandtl number, equation (2.9), 
itself. The sources of errors are: 

the determination of the temperature and 
gradient from the measured temperature and velocity 
profiles; and 
the determination of the correlation terms. They 

can be calculated from equations (2.21, (2.41, (2.5). 
(2.7) putting in the measured temperature and 
velocity profiles. 

In the work of Fuchs the reader will find an 
extensive discussion about that point. 

In spite of the great experimental difficulties some 
conclusions can be drawn from the available 
experiments : 

Pr, < 1 for Pr 2 1 (gases and liquids); 
Pr, > 1 for Pr CC 1 (liquid metals). 

The influence of the wall distance seems not to be 
great, as measurements show [l, 21. Additionally it is 
not fully clear at the moment, whether the turbulent 
Prandtl number decreases or increases from the wall 
to the center of a tube (or the outer edge of a 
boundary layer). There seems to be a trend of 
decreasing turbulent Prandtl number with increasing 
distance from the wall, see equation (4.11) for air 
given by Rotta for example. 

On the other hand the influence of the molecular 
Prandtl number is much greater, this influence 
increases rapidiy with decreasing Prandtl number. In 
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FIG. 1. Experimental results for the turbulent Prandtl 
number. 

Fig. 1 some measurements, which have been reported 

by Fuchs [2], are shown. These measurements are 

made in fully developed tube flow by Fuchs [2] for 
Pr = 0.007, Buhr et al. [3] and Subbotin et al. [4] 
for Pr = 0.02, Sleicher [S] and Tao [6] for Pr = 0.71 
and Smith et al. [7J for Pr = 6.2. Two different 
values of the Reynolds number have been chosen. 

The measureme?ts suggest two marked regions for 
the two Reynolds numbers. Figure 1 shows that: 

PP, seems to be constant for Pr > 1; 
the influence of the Prandtl and Reynolds number 
increases with decreasing Prandtl number; and 
Pr, increases with decreasing Prandtl number and 
decreasing Reynolds number. 

It should be noted that other contributions 
reported by Reynolds [8] indicate that for small 
Prandtl numbers the turbulent Prandtl number 
increases with decreasing Reynolds number as shown 
in Fig. 1, whereas for great Prandtl numbers there 
seems to be an opposite effect. 

Furthermore it should be repeated that the 
experimental knowledge in this field is rather poor 
and that it is risky to draw conclusions from 
unsecured experimental data. Nevertheless in the 
following we have some confidence in the infor- 
mation given by Fig. 1. 

Experimental data for the turbulent Schmidt 
number are extremely rare. It is expected that SC, 
and Pr, would vary in the same way with flow 
conditions, molecular properties and position in the 
flow field. The transport equation for the Reynolds 
shear stress has not precisely the same form as those 
for the Reynolds mass and heat flux (momentum is a 
vector whereas mass fraction and energy are scalar 
quantities), see Section 6. The statement Le, = 1 
seems to be generally accepted. 

4. FIRST ORDER CLOSURE ASSUMPTIONS 
FOR THE TURBULENT PRANDTL NUMBER 

Already Reynolds suggested that the same mech- 
anism of turbulent exchange causes the transfer of 
momentum and of heat. This leads to the statement 
c,=E&orPr,= 1. 

The.same result is obtained with the mixing length 
concept of Prandtl which gives for the Reynolds 
shear stress and the Reynolds heat flux: 

This also leads to the statement Pr, = 1. In 
contrast to Prandtl, Taylor has used different mixing 
lengths for the turbulent transfer of momentum and 
heat and he obtained Pr, = 0.5. 

The value 1 is not bad for air flow in ducts and 
boundary layers, whereas the value 0.5 is approxi- 
mately valid for air jet flows. 

In the past a lot of effort has been made to 
improve these simple models. Recently Reynolds [9] 
published a comprehensive review of models which 
express Pr, as functions of Pr, of position in the flow 
field and sometimes of Reynolds number. Remarks 
about this problem are found in an article by 
Launder [lo], as well as in the work of Fuchs [Z], 
who has made interesting critical comments. 

Following the article of Reynolds [9], who 
examines more than thirty ways of predicting the 
turbulent Prandtl number, these models can be 
divided into seven classes. A short recapitulation of 
Reynolds’ work is given in the following. Only a few 
articles are reported, for details see the original work 

PI. 
The most numerous group of analytical results are 

three classes based on Prandtl’s concept of mixing 
length: 

Jenkins modeted the conduction heat loss of a 
liquid---metal eddy as the transient cooling of a solid 
sphere during a mean travel time, Jenkins’ model 
was modified by Rohsenow and Cohen [12] who 
proposed the relationship: 

Pr,’ =416Pr A-s $ ne4exp -.._ -__ 
n- 1 

(4.3) 

The values for liquid metals are about right, but 
the value of 1.15 for air (Pr = 0.7) is too high. 
Nevertheless in the opinion of White [13] this is the 
best available theory for the turbulent Prandtl 
number. 

(b) Deissler’s [14] analysis and developments ofit 

In contrast to Jenkins, Deissler was only interested 
in very small molecular Prandtl numbers, he took into 
account only the heat transfer from the moving 
element. So Deissler’s model differs fundamentally 
from Jenkins in taking the transfers to and from the 
sphere to be controlled by diffusive processes 
external to the moving element, rather than within it. 
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Deissler’s formula reads: 

Pu; 1 = bPe[ 1 -exp( - I/(hPr))]. (4.4) 

Here Pe is the P&let number PC = RrPr and h 

= 0.000153 is an empirical constant. 
Lykoudis and Touloukian [ 151 as well as Aoki 

[ 161 and others have modified Deissler’s analysis in 
several aspects. Aoki gives 

P,.- t = &‘RrO.~“PrO. 

x fl -exp[- t/(KR~~,~“Pr’.~)lj, (4.5) 

where I< = 0.014 is an empirical constant. 

The defining feature of this category in contrast to 

the models of type (a) and (b) is not the use of an 
immutable mixing length, but the introduction of a 
discrete element which gains or loses heat and 
momentum as it moves through the fluid. Typical for 

this group is the work of Azer and Chao [17]. 
Although their complete formulae are complicated, 

they give simpler approximation for pipe flow 

1 +57f’(v/R)!(Re0,‘hPr0.5x) 
p$., = ~_ A_ _ ._...._.. -. __.- 

1 + 1 35f(?;‘R)/Rr”.” 
(4.6) 

valid for 0.6 < Pr < 15. and 

Pv 
I 

= ~__~38qf’(~/R)lP~~~~” 

1 + 1 35,f(y/R)/Rr0.45 
(4.7) 

valid for liquid metals. In both cases, the variation 
across the pipe is given by 

.1‘(~lR) = exp[ - (y/R)’ “1. (4.8) 

The remaining four groups of models are not based 
on mixing length concepts; they are more hetero- 
geneous. They range from statistical considerations 
to simple empiricism. Reynolds distinguishes the 

following groups: 

Because of the great difficulties the only convinc- 
ing results of rigorous mathematical analysis relate 
to isotropic turbulence. Dunn and Reid [IS] e.g. 
considered isotropic turbulence in the final period of 
decay, where the Reynolds and P&let number are 
very small, and triple correlations become negligible. 

So an exact analysis is possible which finally gives 

for small Re and Pe values. 

The effective diffusivity for heat is expressed in 
terms of Langrangian length scales and the autocor- 
relation coefficient of lateral velocity fluctuations. 
CJsually the assumption of homogeneous turbulence 
is incorporated. A typical result of this group is given 
by Reynolds [S] 

p). i = !5..Pe-‘:2 
1 +C,Re-*“’ 

(4.10) 

with C, = 86 and C, = 200 as empirical constants. 

This group differs from the others in being defined 
by a field of application. Some models use “renewal- 
penetration” arguments for the sublayer, others are 
developed from van Driest’s damped mixing-length 

concept. 

(g) Empirical,fbrmular 

From measurements in boundary layer air Rows 
Rotta [ 191 found 

Pr, = 0,9-0.4(~~~j)~, for Pr = 0.7. (4.1 I) 

Here 6 is the boundary layer thickness. The trend, 
that Pv, decreases with the wall distance from the 

value 0.9 at the wall to 0.5 near the outer edge of the 
boundary layer is in opposition to measurements of 
Quarmby and Quirk 1201 for pipe flow. 

Grlber [21] took no account of the wall distance; 
he only considered the influence of the molecular 

Prandtl number and proposed 

Pr,’ = 0.9i+o.l3Pvo~~~s, 

applicable for 0.7 < Pt. < 100. 
It should be remembered that only a few methods 

discussed by Reynolds have been reported here. This 
has been done in order to make some concluding 
remarks about first order closure and related 

assumptions. 

Azer andCtm _ 

0001 0.01 01 1 Pr ‘0 

FIG. 2. Some relationships for Pr,(Pr, Re) compared with 
experimental results. 

0 t I 
VOOl UOl al 1 pr IO 

FIG. 3. Some relationships for Pr,(Pr.Re) compared with 
experimental results. 
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In the opinion of the authors they can be roughly 
divided into two groups: 

models which are quite good for practical pur- 
poses; they tell us little about the turbulence 
mechanism (a,b,c,f,g); 
models which tell us more about the turbulence 
mechanism; they are of limited importance for 
practical purposes (d,e). 

Figures 2 and 3 show some of the discussed 
formulae compared with the experimental infor- 
mation given in Fig. 1. Evidently no relationship 
gives good agreement with the measurements in the 
whole range of the molecular Prandtl number. 

5. PROPOSAL FOR A SECOND ORDER 
CLOSURE ASSUMPTION 

The aim of our work is to derive: “dissipation” 

an expression for the turbulent Prandtl number 
based on modeled transport equations for the 
turbulent kinetic energy as well as the Reynolds 
heat flux ; and 
an expression for the turbulent Schmidt number 
based on modeled transport equations for the 
turbulent kinetic energy and the Reynolds mass 
flux. 

“diffusion” 

-$[ *.... ]=C+L;i. (5.7) 

In order to do this we follow the original work of 
Prandtl [22] who modeled the transport equation 
for the turbulent kinetic energy: 

- 
k = f(n” +r,‘2+ w’2). (5.1) 

For thin shear flow layers this transport equation 
reads, see Rotta [19] for example: 

L is a turbulence length scale. In the following, only 
equation (5.4) for the Reynolds sheat stress is used. 
The modeling assumptions (5.5-5.7) are given to 
lead over to a similar modeling of the transport 
equation for the Reynolds heat flux. -.- 

To get the transport equation for T’v; one 
multiplies the equation for the instantaneous value of 
temperature (T+ T’) with the velocity fluctuation vi, 
and adds it to the ~j-com~nent of the 
Navier-Stokes equations multiplied by the tempera- 
ture fluctuation T’. Upon tempera1 averaging the 
result reads: 

Here E is the turbulent dissipation (uj = velocity 
vector, .Q = space co-ordinate vector): 

(5.3) 

Following Prandtl we use his original modeling 
assumptions: 

Turbulent shear stress 

“production” 

- au 2 

-ti’y’--=c_JrcL f!! ; 

3Y 0 C’Y 
(5.5) 

k312 

&=CD-* 
L ’ 

(5.6) 

vk 
an; _ - aT - avj 1 -adp -- 
ax, 

-v;v; --vu;T’-+--v;v; - 

ax, ax, PC, ax, * 
“Production” 

1 7-T , a2T 2 I 

+pc p~v~+-h~~i-CprlT.~ 
\. P k 

Y 
k , 

“Dissipative terms” 
-__ - ~ 

1 
+F -c,T 

P 

“Redistributive terms” “Diffusion” 

- 
In order to get analogy to the transport equations for the shear stress U’U’ and for the turbulent kinetic energy 
k, the “dissipative” and “redistributive” terms have to be transformed. For example the first “redistributive” 
term is transformed by: 

-LT$ = _-lLpT’+lp’~ 
P I p axj 

/ \ p 4 
Y 

“Diffusion” “Redistribution” 
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Introducing the molecular Prandtl number the “dissipative” terms can be transformed as follows: 

“Diffusive” “Dissipative” 

In the case of Pr = 1 this is analogous to the corresponding terms in the transport equation for u’v‘: 

1 i a2 7-b; r?T’ ati; 
=v xF--2 -- . 

k ax, ax, 1 
The transport equation for T’v~ now reads for arbitrary Prandtl numbers: 

aT’v; ~ 8T -- ihI 
-v;v; ax, - 

i-ap I- Pr+ 1 8T’ au: _ 

vk ax, 
v;T’ _.A + - v;v; _ + _ &,; - y _.._...__ _- _i 

ax, pep ax, cp Pr ax, a.x, 

1 

1 - l- ------I 
~ ukpr~) f - p'T' 6, - v;ti;p’ - 
PCP P PC, 1 

For thin shear flow layers it follows, see Jischa [23] for example: 

a-77 a u~(Tv)+v- 
at> 

M 
Convection 

(T’o’ ) + 

- 
7 8T u’v’ dp 

---- 

--% 
’ pc,dx 

“Production” 

l- 
- - L”E + y 

Pr+l aat aT 
__-- 

CP pr axj axxi 
_ P’iT’ + . ., + z [73’2 _ I. .] = 0. 

p i?y + 
Y i L”-_v-, \-y--.-.-d 

“Dissipation” “Redistribution” “Diffusion” 

w 

The “redistribution” and “diffusion” terms are not 
given in detail here; the quotation marks should 
refer to the fact that the names of the terms are 
problematic. 

The following discussion is now made for fully 
developed duct flow and therefore zero convective 
terms in equation (5.8). 

In analogy to the modeling above, equation (5.5), 

neglecting the pressure gradient production, we choose 
for the production term : 

15.9) 

be negligible also in non-isotropic turbulence, pro- 
vided that the turbulence Reynolds number is high. 
This means that the redistribution terms limit the 
growth of the Reynolds heat flux. Therefore the 
redistribution terms play a similar role to the 
dissipation terms and no difference between them 
should be made for modeling assumptions. So the 
authors suggest: 

Dissipation and/or redistribution = K, 

Now obviously the simplest case is the assumption 
in analogy to equation (5.6). The assumption 

production = dissipation (or redistribution) neglect- 
production = dissipation (or redistribution) leads to: 

ing the diffusion term. Usually all “dissipation” terms 
in the transport equations as well as all terms 

&+K,$K=o, 
dy 

(5.11) 

containing the molecular viscosity 1’ are neglected 
except the turbulent dissipation E. The arguments are that means 

based on the fact that the dissipative correlation in 
- 

equation (5.8) is zero in isotropic turbulence and will 
- T’$ = ; ,& g, (5.12) 

D dy. 
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and the turbulent Prandtl number follows together 
with equation (5.4) 

Pr, = EG? = constant, 
a 

which corresponds to the results of simple mixing 
length concepts which give Pr, = 1 or 0.5. 

In the next step the diffusion term in equation (5.8) 
shall be taken into account. This has been done by 
the authors in a preceding paper [24]. For fully 
developed turbulent channel ftow this leads to the 
result: 

Pr, = - 
A 

B +.i‘(Re, y/H) 
= Pr,(Re, p/H), (5.14) 

for Pr = 1. Numerical calculations (a set of ordinary 
differential equations has to be solved) gave the 
result shown in Fig. 4. 

p’ 

Fm. 4. Pr,(Rr, y/W) from 1241 for Pr = 1 and channel flow. 

The numerical results show for Pr = 1 a very weak 
influence of the Reynolds number which is in 
agreement with experimental results (see Fig. 1). 
Furthermore the dependence of the wail distance is 
comparable with that given by Rotta, equation 
(4.11). 

Figure 4 shows, together with experimental inform- 
ation, that the assumption of a negligible influence 
of the wall distance is not too bad. That means that 
production and dissipation (or redistribution) are 
the dominant terms in equation (5.8). So we now 
neglect the diffusion term again but we focus our 
attention on the fact, that the second dissipation term 
in equation f5.8) depends on the molecular Prandtl 
number. The modeling given in equation (5.10) 
should profit by this dependence in the following 
way : 

Dissipation and/or redistribution 

(5.15) 

Instead of equation (5.11) we now have: 

akdL+ 
d.r 

and the turbulent Prandti number finally reads 

Pr,(Pr) = 5 Pt.-k1 

a 
K,+K,- 

Pr ! 
Pr+l 

=/j+B&..--= 
Pr 

c +;. (5.17) 

I 

Prt 
3 

2 

1 

I I 
3 1 

OiR 01 1 Pr lo 
FIG. 5. Pr,(Pr, Re) from equation (5.17). 

This formula is extremely simple, but it corresponds 
very well with experimental data as Fig. 5 shows. 
The two constants C and B have to be fitted on these 
data. We have chosen 

C = O.S5, that means Pr, = 0.85 for Pr B I. 

The coefficient B seems to be a function of the 
Reynolds number, which we have not considered 
because we have neglected the diffusion term in 
equation (5.8). Using the experimental information 
of Fig. 1 which is shown in Fig. 5 again we can 
improve the agreement with experimental data by 
assuming B = B(Re). The considered experimental 
data suggest approximately: 

B = 0.012 to 0.05, for Re 12: 2 x IO4 

B = 0.005 to 0.015, for Re = 10’. 

Analogously we shall model the transport equa- 

tion for the Reynolds mass flux 27 which reads for 
thin shear flow layers, see Jischa [23] for example: 

“Dissipation” “Redistribution” 

a---- + - [CW - f .J = 0. 
av i . I 

“Diffusion” 

(5.18) 

The “diffusion” term is not given in detail because we 
shall neglect it in the following discussion. We 
consider again the case of fully developed duct Row 
with zero convective terms in equation (5.18). fn 
analogy to equation (5.9) we model the production 
term: 

p ac ac 
-=ak--. 
aY 3~ 

(5.19) 

In order to get the same result for SC, as for Pr, we 
suggest 

r~istribution = CR G %‘, 
L 

(5.20) 
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and 
.‘i _ 

dissipation = Cs ?‘$! 2’. c’v’, 
e L 

(5.21) 

according to equation (5.15). 

The modeled transport equation for c’r reads 

now: 

The “dissipation” term in the transport equation for - 
c‘c’ depends on the molecular Schmidt number in the 
same way as the second .‘dissipation” term in the 

transport equation for T’c’ depends on the mole- 
cular Prandtl number. 

Using equation (5.4) for I:, the turbulent Schmidt 

number is given by the relationship: 

Assuming SC, to be the same function of SC as 
Pr,(Pr). we get F = C and E = B. Then Fig. 5 can be 
used too for the relationship Sc,(Sc, Rr). 

6. COIVC‘LLIDING REVARKS 

Obviously equation (5.17) agrees better with 
experimental data than the formulae shown in Figs. 
2 and 3. Maybe one reason is the fact, that the 
influence of the molecular prandtl number by the 
factor (fr+ I),‘!? in equation (5.17) is no result of a 
modeling assumption because it appears in the 
transport equation (5.X) for the Reynolds heat flux. 

Of course it is a disadvoantage of equation (5.17) 
that it does not cypress Pi; as ;I function of the wall 

distance and that the intluence of the Reynolds 
number was taken into consideration by ~~daptation 

of experimental data. But in our opinion no simpte 
algebraic formula like equation (5.17) or others can 
do this except by experimental adaptation. 

In order to get information about Pr, =,f(Pr, Re,_y) 

and SC,, = f(,!?. Re,y) the whole flow, temperature and 
concentration field has to be considered. That means 
the governing boundary layer and transport equations 
have to be solved numerically. It is the aim of the 
authors to combine the considerations presented here 
with the briefly reported work [24] in order to get 
inforrn~~ti~~n about the relationships Pr,(Pr, Re,y) and 
SC@<; Re, ~1. 
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SUR L’ESTIMATION DES NOMBRES DE PRANDTL ET DE SCHMIDT TURBULENTS A 
PARTIR DES EQUATIONS DE TRANSPORT 

Resume-On presente des formules pour les nombres de Prandtl et de Schmidt turbulents. Elles sont 
basees sur les equations de transport de l’energie cinetique de turbulence, du flux de chaleur turbulent et 
du flux massique turbulent. Les risultats sont des formules simples, Pr, = C+ B/Z+ et SC, = F+ E/SC, ori 
les constantes ont ete ajustkes a partir des resultats ex~rimentaux. Ceci a &te fait pour les constantes 
dans t’expression du nombre de Prandtl turbulent qui est en tres bon accord avec i’experience. L’accord 
peut etre ameliore en supposant B fonction du nombre de Reynolds. Le resultat est specialement 
interessant pour les mitaux hquides car le nombre de Prandtl turbulent depend fortement du faible 
nombre de Prandtl moleculaire. L’influence du nombre de Reynolds, qui augmente quand le nombre de 

Prandtl diminue, semble etre faible. 

UBER DIE VORHERSAGE TURBULENTER PRANDTL- UND SCHMIDT-ZAHLEN AUS 
MODELLIERTEN TRANSPORTGLEICHUNGEN 

Zusammenfassung-Fiir die turbulente Prandtl- und Schmidt-Zahl werden Beziehungen vorgestellt, die 
auf modellierten Transportgleichungen fiir die Turbulenzenergie, fur den turbulenten Warmestrom und 
Fiir den turbulenten Massendiffusionsstrom beruhen. Als Ergebnis erhtilt man einfache Zusammenh%nge 
Pr, = C+B/Pr und SC, = F i-E/Se, wobei die Konstanten an experimentelle Daten angepafjt werden 
miissen. Dies wurde durchge~hrt Rir die Konstanten in der Beziehung fur die turbulente Prandtl-Zahl; 
die Ubereinstimmung mit Experimenten ist sehr gut. Setzt man B aIs eine Funktion der Reynolds-Zahl 
an, kann die Ubereinstimmung verbessert werden. Das Ergebnis ist besonders interessant Fir fltissige 
Metalle, da die turbulente Prandtl-Zahl im Bereich kleiner Prandtl-Zahlen otIenbar sehr stark von der 
molekularen Prandtl-Zahl abhlngt. Der EinfluD der Reynolds-Zahl, der mit abnehmender Prandtl-Zahl 

zunimmt, scheint schwkher zu sein. 

0 PACsETE TYPGYJIEHTHLIX YHCEJI IIPAHATJIR M IIIMHATA C FlOMO~bIO 
MOAEJIbHbIX YPABHEHMtr HEPEHOCA 

AHHOTIWIWI- ~~ACTaBJlt?HbICOOTHOIUeHR~ AJIll TY#$'JleHTHbIX 'IHCeJl ~&UHATJTR ki WMHATa, KOTOPbIe 

6a3upyK)TCx Ha MOAeJIbHblX YPaBHeHHSiX llQWiOCa JLWI T)'p6yJleHTHOti KHHeTWIeCKOii 3HeprHH, Typ 
byReHTHOr0 TIZUIOBOCO IlOTOKii H Typ6yJieHTHOI'0 IiOTOKa M8CCbl. nOJly'ieHbi IIpOCTbIe +OpM,',Ibl 

pr, = c+ B/f% H .%, = F+ E/Se C KOHCTaH~MH, O~~Aen~eMblM~ 3KCnep~MeHTa~bHO. HaiiAeHbI 

3HaWHm KOHCTaHT B COOTHOUIeHRH AJISI Typ6y;teHTBOrO YHCJIB &h%IA-mS, KOTOpOe 09eHb XOpOE,O 

cornacyercn C 3Kcneper4eHToh4. 3To cornacue Mo)KeT 6bITb ewe 6onee yny9mee0, ecnri npennono- 
ZKHTb, YTO B IlBffReTCIl @'HKUH&i YHCJla PdHOJlbACa. Pe3)'JlbTaT tlpc?ACTaBnaeT OCo6brA HHTepC AAn 

3UUlKHX MeTWlJlOB, TIK KBK B 3TOM CJl)'We Typ6)'JleHTHOC 'IWCJIO npaHATJIZ4 C)(JIbHO 3aBHCliT OT Pr. 


