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Abstract—Relationships for the turbulent Prandtl and Schmidt number are presented. They are based on
modeled transport equations for the turbulent Kinetic energy, for the turbulent heat flux, and the
turbulent mass flux. The final results are simple formulae Pr, = C + B/Pr and S¢, = F+ E/Sc where the
constants have to be adjusted from experimental data. This has been done for the constants in the
relationship for the turbulent Prandt! number which is in very good agreement with experiments. The
agreement can be improved by assuming B to be a function of the Reynolds number. The result is
specially interesting for liquid metals, because for low Prandt! numbers the turbulent Prandtl number
obviously depends strongly on the molecular Prandtl number. The influence of the Reynolds number,
which is increasing for decreasing Prandtl numbers, seems to be weaker.

NOMENCLATURE
¢, mass-fraction;
€, specific heat at constant pressure;
D, binary diffusion coefficient ;
H, half channel width:
i diffusion flux;
k, turbulent kinetic energy;
1 mixing length;
L, turbulence length scale;
Le,, turbulent Lewis number;
D, static pressure ;
Pe,  Péclet number;
Pr.  molecular Prandtl number;
Pr,,  turbulent Prandtl number;
q, heat flux;
Re,  Reynolds number:
Se,  molecular Schmidt number;
Sc,,  turbulent Schmidt number;
T, temperature;
u,p,w, components of velocity;
x,¥, components of space co-ordinate.

Greek symbols
&, turbulent dissipation;
£ e eddy diffusivity for mass;
£ eddy diffusivity for heat;
Eppn eddy diffusivity for momentum

1, dynamic viscosity;

A thermal conductivity ;

v, kinematic viscosity ;

0. density;

7, shear stress.
Subscripts

t, turbulent.

L. INTRODUCTION
THE KNOWLEDGE of the turbulent Prandtl and
Schmidt number is the central problem of all
theoretical considerations concerning the turbulent

heat and mass transfer. Experimental as well as
theoretical investigations have shown that the turbu-
lent Prandtl/Schmidt number is neither a constant
nor a unique function of the fluid properties. The
turbulent Prandtl/Schmidt number depends strongly
on the turbulence mechanism and therefore on the
flow field. In general it is a function of:

The Reynolds number Re;

The molecular Prandtl or
respectively ; and

The coordinate normal to the wall.

Schmidt number

We shall discuss in detail in Section 3 that the
influence of these three variables depends more or
less on the molecular Prandtl/Schmidt number itself.
For Pr or Sc = 1 (gases and liquids) the influence of
the Reynolds and Prandtl/Schmidt number seems to
be weak. For values Pr or Sc « 1 {liquid metals) on
the other hand there seems to be a strong influence
of the Reynolds and Prandtl/Schmidt number on the
turbulent Prandtl/Schmidt number. In this case
the dependence on the wall distance is small com-
pared with the dependence on the Reynolds and
Prandtl/Schmidt number. As a consequence of
these statements the exact knowledge of the turbulent
Prandtl/Schmidt number is much more problematic
for liquid metals than for gases and liquids.

The aim of this work is to discuss and to consider
the influence of the molecular Prandtl/Schmidt
number on the turbulent Prandtl/Schmidt number.
Modeling assumptions will lead to a simple algebraic
formula Pr(Pr) and Sc(Sc) which can be used for
fully developed duct flow. Further on we shall
discuss the question how the influence of the
Reynolds number can be taken into account.

2. GOVERNING EQUATIONS
The following considerations are restricted to two-
dimensional incompressible thin shear flow layers of
a binary nonreacting mixture which are described by
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the boundary layer equations:
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The velocity components u and v, the pressure p,
the mass fraction ¢ and the temperature T are time
mean values; the bar is omitted for simplicity except
for the correlation terms. The density p, the specific
heat ¢, as well as the transport coefficients #, D and 1
are assumed to be constant.

In analogy to molecular transport coefficients
Boussinesq suggested the introduction of eddy
diffusivities by the definitions

- 51.4‘ 7 5C‘ p——— éT
W' = —¢g,—; ¢tV =—¢p—; TV = — & .
oy oy dy

(2.8)

Now the Reynolds shear stress is replaced by the
eddy diffusivity &, for momentum and Reynolds heat
and mass flux are replaced by the eddy diffusivity ¢,
for heat and the eddy diffusivity &, for mass. Ratios
of those diffusivities are called the turbulent Prandt!
and Schmidt number:

&n WU cféy

Pr =" = . P S =—= .- .
! 3% ¥ ! &n v au/ay

(2.9

In addition a turbulent Lewis number is defined as
the ratio

Pr,

. 2.10
S (2.10)

Le, =

Closure assumptions are necessary to determine

the unknown Reynolds fluxes or the eddy diffusi-
vities respectively. This can be done either:

by local relationships like the mixing length concept
of Prandtl (first order closure); or

by differential equations based on modeled transport
equations (second order closure).

3. EXPERIMENTAL INVESTIGATIONS

From experiments in smooth tubes and channels it
is known that the turbulent Prandtl number is a

MiCHAEL JisCHA and HEiNZ BEREND RIEKE

function of the Reynolds number
2Hu

It

m,

Re = u,, = mixed mean velocity, (3.1}

and the Prandtl number

=%

Pr £
A

(3.2)
as well as the normalized wall distance y/H. 2H is
the width of the channel or the diameter of the tube.
Therefore a relationship,

Pr,= f(Pr, Re, y/H) or Sc,= f(Sc, Re, y/H),
(3.3)

is expected. Sometimes equation (3.3) is written like

Pr,= f(Pr, Re, ¢,,/v) or Sc,= [(Sc, Re, &,/v).
{3.4)

This can be done because the eddy diffusivity ¢, of
momentum divided by the viscosity v is a function of
the Reynolds number and the wall distance.

In the following some experimental results based
on the book of Eckert and Drake [1] and the thesis
of Fuchs [2] are given. Eckert and Drake report
measurements for air and mercury in fully developed
turbulent tube flow and they write [ 1, p. 384]:
“Experimental difficulties were obviously so great
that no satisfactory agreement between the results
obtained by various investigators could be ob-
tained”. Fuchs[2] describes the experimental diffi-
culties in more detail. They arise from the definition
of the turbulent Prandtl number, equation (2.9),
itself. The sources of errors are:

the determination of the temperature and
gradient from the measured temperature and velocity
profiles; and

the determination of the correlation terms. They
can be calculated from equations (2.2), (2.4}, (2.5},
(2.7) putting in the measured temperature and
velocity profiles.

In the work of Fuchs the reader will find an
extensive discussion about that peint.

In spite of the great experimental difficulties some
conclusions can be drawn from the available

experiments:

Pr, < 1 for Pr 2 1 (gases and liquids);
Pr,> 1for Pr « 1 {liguid metals).

The influence of the wall distance seems not to be
great, as measurements show {1, 2]. Additionally it is
not fully clear at the moment, whether the turbulent
Prandtl number decreases or increases from the wall
to the center of a tube (or the outer edge of a
boundary layer). There seems to be a trend of
decreasing turbulent Prandtl number with increasing
distance from the wall, see equation (4.11) for air
given by Rotta for example.

On the other hand the influence of the molecular
Prandtl number is much greater, this influence
increases rapidly with decreasing Prandt]l number. In
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FiG. 1. Experimental resuits for the turbulent Prandtl
number.

Fig. 1 some measurements, which have been reported
by Fuchs [2], are shown. These measurements are
made in fully developed tube flow by Fuchs [2] for
Pr=0.007, Buhr et al. [3] and Subbotin et al. [4]
for Pr = 0.02, Sleicher [5] and Tao [6] for Pr=0.71
and Smith et al. [7] for Pr=6.2. Two different
values of the Reynolds number have been chosen.

The measurements suggest two marked regions for
the two Reynolds numbers. Figure | shows that:

Pr, seems to be constant for Pr> 1;

the influence of the Prandtl and Reynolds number
increases with decreasing Prandt! number ; and

Pr, increases with decreasing Prandtl number and
decreasing Reynolds number.

It should be noted that other contributions
reported by Reynolds {8] indicate that for small
Prandtl numbers the turbulent Prandtl number
increases with decreasing Reynolds number as shown
in Fig. 1, whereas for great Prandtl numbers there
seems to be an opposite effect.

Furthermore it should be repeated that the
experimental knowledge in this field is rather poor
and that it is risky to draw conclusions from
unsecured experimental data. Nevertheless in the
following we have some confidence in the infor-
mation given by Fig. 1.

Experimental data for the turbulent Schmidt
number are extremely rare. It is expected that Sc,
and Pr, would vary in the same way with flow
conditions, molecular properties and position in the
flow field. The transport equation for the Reynolds
shear stress has not precisely the same form as those
for the Reynolds mass and heat flux {(momentum is a
vector whereas mass fraction and energy are scalar
quantities), see Section 6. The statement Le, = 1
seems to be generally accepted.

4. FIRST ORDER CLOSURE ASSUMPTIONS
FOR THE TURBULENT PRANDTL NUMBER
Already Reynolds suggested that the same mech-
anism of turbulent exchange causes the transfer of
momentum and of heat. This leads to the statement
e, =8,0r Pr,=1.
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The same result is obtained with the mixing length
concept of Prandtl which gives for the Reynolds
shear stress and the Reynolds heat flux:

— cu Cu
T, = —put = p[z — = 4.1)
(",),' 7}7
—_ du OT
= TV =pc I — —. 4.2
a=pe, TV =pe, 10 o0 (4.2)

This also leads to the statement Pr,= 1. In
contrast to Prandtl, Taylor has used different mixing
lengths for the turbulent transfer of momentum and
heat and he obtained Pr, = 0.5.

The value 1 is not bad for air flow in ducts and
boundary layers, whereas the value 0.5 is approxi-
mately valid for air jet flows.

In the past a lot of effort has been made to
improve these simple models. Recently Reynolds [9]
published a comprehensive review of models which
express Pr, as functions of Pr, of position in the flow
field and sometimes of Reynolds number. Remarks
about this problem are found in an article by
Launder {10], as well as in the work of Fuchs [2],
who has made interesting critical comments.

Following the article of Reynolds [9], who
examines more than thirty ways of predicting the
turbulent Prandtl number, these models can be
divided into seven classes. A short recapitulation of
Reynolds” work is given in the following. Only a few
articles are reported, for details see the original work
[9].

The most numerous group of analytical results are
three classes based on Prandtl’s concept of mixing
length:

{a) Jenkins'  [11]
modifications

Jenkins modeled the conduction heat loss of a
liquid—metal eddy as the transient cooling of a solid
sphere during a mean travel time, Jenkins' model
was modified by Rohsenow and Cohen [12] who
proposed the relationship:

20 2,2

Pr; ' =416Pr %5——% Y n“‘exp( 00024z ,L) ‘

n=1

analysis  and  subsequent

(4.3)

The values for liquid metals are about right, but
the value of 1.15 for air (Pr=10.7) is too high.
Nevertheless in the opinion of White [13] this is the
best available theory for the turbulent Prandt
number.

(b) Deissler’s [14] analysis and developments of it

In contrast to Jenkins, Deissler was only interested
in very small molecular Prandtl numbers, he took into
account only the heat transfer from the moving
element. So Deissler’s model differs fundamentally
from Jenkins in taking the transfers to and from the
sphere to be controlled by diffusive processes
external to the moving element, rather than within it.
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Deissler’s formula reads:
Pr7 ' = bPe[l—exp(—1/(bPe})].

Here Pe is the Péclet number Pe = RePr and b
= 0.000153 is an empirical constant.

Lykoudis and Touloukian [15] as well as Aoki
[16] and others have modified Deissler’s analysis in
several aspects. Aoki gives

Pr[ ' = KRe%45 pro2

x {1 —exp[ — I/(KRe™* Pr21]1,  (4.5)

4.4)

where K = 0.014 is an empirical constant.

(€} More varied mixing—iength models

The defining feature of this category in contrast to
the models of type (a) and (b) is not the use of an
immutable mixing length, but the introduction of a
discrete element which gains or loses heat and
momentum as it moves through the fluid. Typical for
this group is the work of Azer and Chao [I7].
Although their complete formulae are complicated,
they give simpler approximation for pipe flow

_ 1+57f (/R )/(R()Q'%p,.o.ss)

. : — 4.6
¥y 1+ }35]-(},/1}2 )/Re();in { )
valid for 0.6 < Pr < 15, and
1 4+ 3801 {y/R)/ P8
_ 1 +3807(y/R)/Pe @7

y, = A

PO 135f(y/R)/Re45
valid for liquid metals. In both cases, the variation
across the pipe is given by

S(/R) = exp[ ~ (y/R)"].

The remaining four groups of models are not based
on mixing length concepts; they are more hetero-
geneous. They range from statistical considerations
to simple empiricism. Reynolds distinguishes the
following groups:

4.8)

(d) Formal analysis based on exact equations

Because of the great difficulties the only convinc-
ing results of rigorous mathematical analysis relate
to isotropic turbulence. Dunn and Reid [18] eg.
considered isotropic turbulence in the final period of
decay, where the Reynolds and Peéclet number are
very small, and triple correlations become negligible.
So an exact analysis is possible which finally gives

P 2pr 132
Pr;t =205 T—r};—- {1 - L j}') } } {4.9)
— Pr ¥

for small Re and Pe values.

(e) Diffusivity models

The effective diffusivity for heat is expressed in
terms of Langrangian length scales and the autocor-
relation coefficient of lateral velocity fluctuations.
Usually the assumption of homogeneous turbulence
is incorporated. A typical result of this group is given
by Reynolds [8]

o= 14+ C,Re™ 1’ (4.10)

with C, = 86 and C, = 200 as empirical constants.
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(Y Wall-layer models

This group differs from the others in being defined
by a field of application. Some models use “renewal-
penetration” arguments for the sublayer, others are
developed from van Driest’s damped mixing-length
concept.

(g) Empirical formulae
From measurements in boundary layer air flows
Rotta [19] found

Pr, = 09—04(y/5)*, for Pr=07. (411)

Here J is the boundary layer thickness. The trend,
that Pr, decreases with the wall distance from the
value 0.9 at the wall to 0.5 near the outer edge of the
boundary layer is in opposition to measurements of
Quarmby and Quirk [20] for pipe flow.

Gréber [21] took no account of the wall distance;
he only considered the influence of the molecular
Prandtl number and proposed

Pr;t =091 +0.13Pr0-545,

applicable for 0.7 < Pr < 100.

It should be remembered that only a few methods
discussed by Reynolds have been reported here. This
has been done in order to make some concluding
remarks about first order closure and related
assumptions,
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F1G. 2. Some relationships for Pr,(Pr, Re) compared with
experimental results,
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Fig. 3. Some relationships for Pr,(Pr, Re) compared with
experimental results.
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In the opinion of the authors they can be roughly
divided into two groups:

models which are quite good for practical pur-
poses; they tell us little about the turbulence
mechanism {(a,b,c.f,g);

models which tell us more about the turbulence
mechanism; they are of limited importance for
practical purposes (d,e).

Figures 2 and 3 show some of the discussed
formulae compared with the experimental infor-
mation given in Fig. 1. Evidently no relationship
gives good agreement with the measurements in the
whole range of the molecular Prandtl number.

5. PROPOSAL FOR A SECOND ORDER
CLOSURE ASSUMPTION

The aim of our work is to derive:

an expression for the turbulent Prandtl number
based on modeled transport equations for the
turbulent kinetic energy as well as the Reynolds
heat flux ; and

an expression for the turbulent Schmidt number
based on modeled transport equations for the
turbulent kinetic energy and the Reynolds mass
flux.

In order to do this we follow the original work of
Prandti [22] who modeled the transport equation
for the turbulent kinetic energy:

k=Lw? +02+w?). (5.1)
For thin shear flow layers this transport equation

reads, see Rotta [19] for example:

-
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Here ¢ is the turbulent dissipation {v; = velocity
vector, x, = space co-ordinate vector):

o (v, Oy
=yt L +—1 53
8=y 0%, ((’bck 6xj> :3)

Following Prandtl we use his original modeling
assumptions:

Turbulent shear stress

FolF au au
—u'v —?m@fyZCfV/IEL@; (54)
“production”
du\?
—uv = kL (i‘) ; (5.5)
“\dy
“dissipation”
k3/2
e=Cp T (5.6)
“diffusion”
bij i ok
—T.... = —l JkL (5.7
dy y 0y

L is a turbulence length scale. In the following, only
equation (5.4) for the Reynolds sheat stress is used.
The modeling assumptions (5.5—5.7) are given to
lead over to a similar modeling of the transport
equation for the Reynolds heat flux.

To get the transport equation for 7'v; one
multiplies the equation for the instantaneous value of
temperature {T+ T') with the velocity fluctuation v,

ok ? k 4,-,6 0 X 7y, 0. (52 and adds it to the xjcomponent of the
ua e @+ v 3}+8+é} +;)U =0. 52 Navier-Stokes equations multiplied by the tempera-
ture fluctuation T'. Upon temperal averaging the
result reads:
U@T” - ’/avj+1 ,,é)p
R n s — U —_— —r— JE——
¥ ox, ox, ok 6x,‘ pe, T 0x,
“Production”
1 —\2 4 , azv}
TTp psv +/1vj e +enT 7
“Dissipative terms”
1 o', op ap' ap’ & e
+— =, 7" — +7 ——+ Wy — | — — (T'Vw,
pe, ox; i Ly 1 0x, Ut 0x; | 0%, T vJv,‘J)

Redlsmbutwe terms”

In order to get analogy to the transport equations for the shear stress u'v

“Diffusion™

v’ and for the turbulent kinetic energy

k, the “dissipative” and “redistributive” terms have to be transformed. For example the first “redistributive”

term is transformed by:

1 , 5?" i @ iyt 1 ) a1’

T = e e T+~ p —

p 0x; p 0x; P Ox;
“Diffusion” “Redistribution™



1552

MiCHAEL JiscHA and HEINZ BEREND RIEKE

Introducing the molecular Prandtl number the “dissipative” terms can be transformed as follows:

2 A2, - 2/
PO By [ 8T

— ' [ 19 2
Ac, oxg

52’]
ox? |

[0
= | —
. 0x,

Yz p axt Ler

(Lo (i 1)
Pr éx, K Pr)

Pr+18T dv; :I

_Pr o dx, oy,

)
0x, )

dx, 0x,

“Diffusive™ “Dissipative”

In the case of Pr = 1 this is analogous to the corresponding terms in the transport equation for u'v':

2T o*v; 2T, aT" ov;

v v:,.——+T’ I =y —~’—--2———’]
A2 1.2 a2 AL AL
VA U.)\,k J L b«‘k (4 ‘k U.Xk _j

The transport equation for T’u now reads for arbitrary Prandtl numbers:

aT", T e O 6p
o, = —viny ~ 0T ==+ —vjp; +—
0x, Xy &,  pe, ('}xk ¢y
1 fov, | o . v aT’
- =t v+ c
pc, L@ Fox,  ox, T éx ;
é v 0T'v; Pr—1 _ v}
— | Ty, — — —v T —
0x, r o 8x, Pr Xy

1 — - — ]
— —,p0; + —~ p'T' 6y — vivip' 7]

1 —

Pr+1 0T’ 617

For thin shear flow layers it follows, see Jischa [23] for example:

& — @ — 0T uv'dp
u—(Tv)+vw(T’v’)+v‘ - —
ox Oy 8y pc, d’ﬁ
Convection " Production”
I —  Pr+d o aT p o’ 6 —
——ve+v —— e+ [T = ]=0. (58)
c, Pr 8x;0x; p 6}’ oy
“Dissipation” “Redistribution™ “Diffusion™

The “redistribution” and “diffusion” terms are not
given in detail here; the quotation marks should
refer to the fact that the names of the terms are
problematic.

The following discussion is now made for fully
developed duct flow and therefore zero convective
terms in equation (5.8).

In analogy to the modeling above, equation (5.5),
neglecting the pressure gradient production, we choose
for the production term:

— 0T

v 2

= ak ——. (5.9)

oy dy
Now obviously the simplest case is the assumption
production = dissipation (or redistribution) neglect-
ing the diffusion term. Usually all “dissipation” terms
in the transport equations as well as all terms
containing the molecular viscosity v are neglected
except the turbulent dissipation &. The arguments are
based on the fact that the dissipative correlation in
equation {5.8) is zero in isotropic turbulence and will

be negligible also in non-isotropic turbulence, pro-
vided that the turbulence Reynolds number is high.
This means that the redistribution terms limit the
growth of the Reynolds heat flux. Therefore the
redistribution terms play a similar role to the
dissipation terms and no difference between them
should be made for modeling assumptions. So the
authors suggest:

I
't

e S /k
Dissipation and/or redistribution = K, YZ— T,
(5.10)

in analogy to equation (5.6). The assumption
production = dissipation (or redistribution) leads to:

dT k——
ak g +K,,LL/ T =0, (5.11)
that means
— dT
—T'p = — kLA, 5.12
b KDJ & (5.12)
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and the turbulent Prandtl number follows together
with equation (5.4)

CK,

Pr, = — = constant, (5.13)
a

which corresponds to the results of simple mixing
length concepts which give Pr, = 1 or 0.5

In the next step the diffusion term in equation (5.8}
shall be taken into account. This has been done by
the authors in a preceding paper [24]. For fully
developed turbulent channel flow this leads to the
result:

A
A

Prr = N T e
B+ f(Re, v/H)
for Pr = 1. Numerical calculations (a set of ordinary

differential equations has to be solved) gave the
result shown in Fig. 4.

= Pr{Re, y/H), (5.14}

10 T
~.
-~ N _\ )
\.
oSt Re=4-29x105
- —— Re=1-30x105
.. ROMQ, 0. {401}
O 1
0 05 yIH 10

F1G. 4. Pr,(Re, y/H) from [24] for Pr = 1 and channel flow.

The numerical results show for Pr = | a very weak
influence of the Reynolds number which is in
agreement with experimental results {(see Fig. 1).
Furthermore the dependence of the wall distance is
comparable with that given by Rotta, equation
4.1,

Figure 4 shows, together with experimental inform-
ation, that the assumption of a npegligible influence
of the wall distance is not too bad. That means that
production and dissipation (or redistribution} are
the dominant terms in equation (5.8). So we now
neglect the diffusion term again but we focus our
attention on the fact, that the second dissipation term
in equation (5.8) depends on the molecular Prandtl
number. The modeling given in equation (5.10)
should profit by this dependence in the following
way:

Dissipation and/or redistribution

Pr+ k—o
= <K:;+Kp : “)5/. T

Pr ) L

(3.15)

Instead of equation (5.11) we now have:

/ Pr+l)\/;

ak 3T 4 (K, 4K T =0, (516
dy (D ? pr L ¥ =0, (5.16)
and the turbulent Prandtl number finally reads

C, Pr+1
Pr(Pr) = = (Kn+Kp = )

= A+B =CH—.

(5.17)
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FiG. 5. Pr(Pr, Re) from equation (5.17).

This formula is extremely simple, but it corresponds
very well with experimental data as Fig. 5 shows.
The two constants ¢ and B have to be fitted on these
data. We have chosen

C = 0.85, that means Pr, = 085for Pr» 1.

The coefficient B seems to be a function of the
Reynolds number, which we have not considered
because we have neglected the diffusion term in
equation {(5.8). Using the experimental information
of Fig. 1 which is shown in Fig. 5 again we can
improve the agreement with experimental data by
assuming B = B(Re). The considered experimental
data suggest approximately:

B=001210 005, forRe=2x 10*
B = 0.005 to 0.015, for Re = 10°.
Analogously we shall model the transport equa-

tion for the Reynolds mass flux ¢'v’ which reads for
thin shear flow layers, see Jischa [23] for example:

4 — 8 — —5dc

u—(CVY+o — (V) + v —

0x dy dy
Convection “Production”

<5c+ 1 )?727“237 poc
+ V] e | e e e
Se

dx; Ox;
“Dissipation” “Redistribution™

f02

a

“Diffusion”

The “diffusion” term is not given in detail because we
shall neglect it in the following discussion. We
consider again the case of fully developed duct flow
with zero convective terms in equation (5.18). In
analogy to equation (5.9) we model the production
term:

(5.19)

In order to get the same result for Se, as for Pr, we

suggest
redistribution = Cy T v, (5.20)
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and
Se+1 V"k

dissipation = Cg ~— Y- ¢t/

s 5.21
S¢e L ( )

according to equation (5.15).
The modeled transport equation for ¢v’ reads
now:

fe Sc+ 1\ Jk -
ak -+ (CR IR ) Yoot =00 (5.22)
& s )L

The “dissipation™ term in the transport equation for

¢'t’ depends on the molecular Schmidt number in the
same way as the second “dissipation” term in the
cular Prandtl number.

Using equation (5.4) for ¢, the turbulent Schmidt
number is given by the relationship:

3 Se+1
Se,(Sc) = ( Cr+Cs _E’.'L)
a Se |

Se+1 E
=D+E T F+SC.
Assuming Sc, to be the same function of Sc¢ as
Pr,(Pr),we get F = C and £ = B. Then Fig. 5can be
used too for the relationship S¢,{Sc, Re).

(5.23)

6. CONCLUDING REMARKS

Obviously equation (5.17) agrees better with
experimental data than the formulae shown in Figs.
2 and 3. Maybe one reason is the fact, that the
influence of the molecular Prandil number by the
factor (Pr+1)/Pr in equation (5.17) is no result of a
modeling assumption because it appears in the
transport equation (5.8) for the Reynolds heat flux.

Of course it is a disadvantage of equation {5.17)
that it does not express Pr, as a function of the wall
distance and that the influence of the Reynolds
number was taken into consideration by adaptation
of experimental data. But in our opinion no simple
algebraic formula like equation (5.17) or others can
do this except by experimental adaptation.

In order to get information about Pr, = f(Pr,Re, y)
and S¢ = f(Sc. Re,y) the whole flow, temperature and
concentration field has to be considered. That means
the governing boundary layer and transport equations
have to be solved numerically. It is the aim of the
authors to combine the considerations presented here
with the briefly reported work [24] in order to get
information about the relationships Pr{Pr, Re, y) and
Sc{Sc, Re, y).
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About the prediction of turbulent Prandt! and Schmidt numbers from modeled transport equations

SUR L’ESTIMATION DES NOMBRES DE PRANDTL ET DE SCHMIDT TURBULENTS A
PARTIR DES EQUATIONS DE TRANSPORT

Reésume—On présente des formules pour les nombres de Prandt] et de Schmidt turbulents. Elles sont
basées sur les équations de transport de I'énergie cinétique de turbulence, du flux de chaleur turbulent et
du flux massique turbulent. Les résultats sont des formules simples, Pr, = C+ B/Pr et Sc, = F+E/Sc, ou
les constantes ont été ajustées a partir des résultats expérimentaux. Ceci a été fait pour les constantes
dans Pexpression du nombre de Prandtl turbulent qui est en trés bon accord avec 'expérience. L'accord
peut étre ameélioré en supposant B fonction du nombre de Reynolds. Le resultat est spécialement
intéressant pour les métaux liquides car le nombre de Prandtl turbulent dépend fortement du faible
nombre de Prandtl moléculaire. L’influence du nombre de Reynolds, qui augmente quand le nombre de
Prandtl diminue, semble étre faible.

UBER DIE VORHERSAGE TURBULENTER PRANDTL- UND SCHMIDT-ZAHLEN AUS
MODELLIERTEN TRANSPORTGLEICHUNGEN

Zusammenfassung —Fiir die turbulente Prandtl- und Schmidt-Zahl werden Beziehungen vorgestellt, die
auf modellierten Transportgleichungen fir die Turbulenzenergie, fiur den turbulenten Wirmestrom und
fiir den turbulenten Massendiffusionsstrom beruhen. Als Ergebnis erhélt man einfache Zusammenhinge
Pr,=C+B/Pr und Sc, = F+E/Sc, wobei die Konstanten an experimentelle Daten angepalit werden
miissen. Dies wurde durchgefiihrt far die Konstanten in der Beziehung fir die turbulente Prandti-Zahl;
die Ubereinstimmung mit Experimenten ist sehr gut. Setzt man B als eine Funktion der Reynolds-Zahl
an, kann die Ubereinstimmung verbessert werden. Das Ergebnis ist besonders interessant fiir fliissige
Metalle, da die turbulente Prandtl-Zahl im Bereich kleiner Prandtl-Zahlen offenbar sehr stark von der
molekularen Prandtl-Zahl abhdngt. Der Einflull der Reynolds-Zahl, der mit abnehmender Prandtl-Zahl
zunimmt, scheint schwicher zu sein.

O PACYETE TYPBVJIEHTHBIX YHCEJ NPAHATAS ¥ IMUATA C NTOMOUIBIO
MOJEJbHBIX YPABHEHMH NEPEHOCA

Annoraums — IpeacTanienbl COOTHOLIEHHA [UIs TYpOyaeHTHBIX Yucen [Ipanataa u limuara, koTophie
6a3upyIOTCH HA MOMENbHBIX YPAaBHEHHSX MEPEHOCA 1A TypOYJeHTHOR KHHETHYECKOW DHEPTHH, Typ-
OyneHTHOro TENAOBOro noToka H TypOyneHTHOro motoka macchl. [lonyuenst npoctsic GopMysi
Pr,=C+ B/Pr u Sc, = F+ E{Sc ¢ XOHCTAHTAMH, ONPEIEISEMBIMH IKCHEPHMEHTaMLHO. Hailigenst
3HaYEHMs KOHCTAHT B COOTHOINCHHH WA TypOynenTHoro uncaa [lpaHiaTns, KOTOpOe O4eHbL XOpOUIO
COFJIACYETCA € IKCIEPHMEHTOM. JTO COTAacHe MOXeT ObITh enie Honee ynyyuieHO, eciiy Npeanono-
XHTh, 4T0 B aBnserca dynxumedt uucna Pefinonbaca. PesyneTat npenctasnset ocobwiii mHTEpEC Wnst
XHIKHX METa/IoB, TaK kak B 3TOM ciy4dae TypOyneHTHoe uucao Ilpanaris cwibHo 3aBucHT oT Pr.
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